首页 > 知识库 > 正文

图像处理与分析介绍 了解图像处理与分析的详细内容

图像处理(image processing),是对图像进行分析、加工、和处理,使其满足视觉、心理以及其他要求的技术。图像处理是信号处理在二维信号(图像域)上的一个应用。目前大多数的图像是以数字形式存储,因而图像处理很多情况下指数字图像处理。 图像分析(image analysis)和图像处理(image processing)关系密切,两者有一定程度的交叉,但是又有所不同。图像处理侧重于信号处理方面的研究,比如图像对比度的调节、图像编码、去噪以及各种滤波的研究。但是图像分析更侧重点在于研究图像的内容,包括但不局限于使用图像处理的各种技术,它更倾向于对图像内容的分析、解释、和识别。因而,图像分析和计算机科学领域中的模式识别、计算机视觉关系更密切一些。 图像理解(image understanding)就是对图像的语义理解。它是以图像为对象,知识为核心,研究图像中有什么目标、目标之间的相互关系、图像是什么场景以及如何应用场景的一门学科。 图像理解属于数字图像处理的研究内容之一,属于高层操作。其重点是在图像分析的基础上进一步研究图像中各目标的性质及其相互关系,并得出对图像内容含义的理解以及对原来客观场景的解释,进而指导和规划行为。图像理解所操作的对象是从描述中抽象出来的符号,其处理过程和方法与人类的思维推理有许多相似之处。www.shufadashi.com*�ɼ*�

内容简介

图像处理与分析Image Processing and Analysis:

书的内容本身大抵是没问题的,因为我本身也是入门选的这本书。但是读起来就是有种困难,这种困难不是来自专业术语的费解,而是翻译上的语句结构问题。很多解释性的语句

Variational,PDE,Wavelet,and Stochastic Methodsis systematic and well organized,The authors first investigate the geometric,functional,and atomic structures of images and then rigorously develop and analyzes ever alimage processors.

字体采用相应字体编号的负数。如:-3表示黑体空心字。 三、合并区 1、可以在屏幕上开一个窗口,系统就会将窗口内的所有区合并,合并后区的图形参数及属性与左键弹起时所在

The book is comprehensive and integrative, covering the four most powerful classes of mathematical tools in contemporary image analysis and processing while exploring the irintrinsic connection sand integration.

图像处理与模式分析属于图像类的方向,要学习一些图像的课程:数字图像处理、模式识别、机器学习等等,这些课程要求你的数学和计算机编程能力,主要涉及C++与matlab编程,

The material is balanced in theory and computation, following a solid theoretic alanalysis of model building and performance with computational implementation and numerical examples.

图像处理能力和图像序列并行处理能力[9]。 2 、基于小波变换的图像处理方法在DSP上的实现 小波分析是近年迅速发展起来的新兴学科, 与Fourier 分析和Gabor变换相比,小波

This book is written for graduate students and researcher sinapplied mathematics, computerscience, electrical engineering, and other disciplines who are interested in problems in imaging and computervision.

因而图像处理很多情况下指数字图像处理。 图像分析(image analysis)和图像处理(ima 图像理解所操作的对象是从描述中抽象出来的符号,其处理过程和方法与人类的思维推理

It can beused as a reference by scientists with specific tasks in image processing, as well as by researcher swith a general interest in finding out about the latest advances.

目录

比如外形轮廓、尺寸、平面等。 第三,对比检测,这里边就需要用到图像处理分析。对于检测来说,就是和物体进行比较,将之前定位,测量所锁定的产品与同类型完美的产品进行比

ListofFigures

留个邮箱,发给你

Preface

从字面意思来看 数字图像处理,侧重于计算机视觉、机器视觉算法的开发 图像处理分析侧重于视觉软件的学习 机器视觉主讲机器视觉构成,含硬件、软件现场使用

1Introduction

matlab 图像处理工具箱的函数做够你做你所需要的,而且使用简单,从文库上下载matlab图像处理的相关书籍上面有例子代码,参考matlab的帮助也可以里面也有例子代码.

1.1DawningoftheEraofImagingSciences

我发给你吧。

1.1.1ImageAcquisition

图像的二维FFT可以看作先对图像的每行进行一维序列的FFT(N行共需要N次),再对得到的结果矩阵的每一列进行一维序列的FFT(N列共需要N次)。所以对N*N的图像的二维FFT

1.1.2ImageProcessing

我把我收集的PS教程和素材发给你一份 思缘设计论坛的教程区有不少不错的书籍下载的。 邮件名字是:2012年最新PS教程15000例,附件为实例电子书附免费笔刷和图片素

1.1.3ImageInterpretationandVisualIntelligence

需要买了,清华大学的书籍比较出名

1.2ImageProcessingbyExamples

选择的艺术 图像深度剖析 (也是关 文涛老师 的书) 这个素材我有 你要么!!

1.2.1ImageContrastEnhancement

1.2.2ImageDenoisirg

1.2.3ImageDeblurring

1.2.4ImageInpainting

1.2.5ImageSegmentation

1.3AnOverviewofMethodologiesinImageProcessing

1.3.1MorphologicalApproach

1.3.2FourierandSpectralAnalysis

1.3.3WaveletandSpace-ScaleAnalysis

1.3.4StochasticModeling

1.3.5VariaticnalMethods

1.3.6PartialDifferentialEquations(PDEs)

1.3.7DifferentApproachesAreIntrinsicallyInterconnected

1.4OrganizationoftheBook

1.5HowtoReadtheBcok

2SomeModernImageAnalysisTools

2.1GeometryofCurvesandSurfaces

2.1.IGeometryofCurves

2.1.2GeometryofSurfacesinThreeDimensions

2.1.3HausdorffMeasuresandDimensions

2.2FunctionswithBoundedVariations

2.2.1TotalVariatienasaRadonMeasure

2.2.2BasicPropertiesofBVFunctions

2.2.3TheCo-AreaFormula

2.3ElementsofThermodynamicsandStatisticalMechanics

2.3.1EssentialsofThermodynamics

2.3.2EntropyandPotentials

2.3.3StatisticalMechanicsofEnsembles

2.4BayesianStatisticalInference

2.4.1ImageProcessingorVisualPerceptionasInference

2.4.2BayesianInference:BiasDuetoPriorKnowledge

2.4.3BayesianMethodinImageProcessing

2.5LinearandNonlinearFilteringandDiffusion

2.5.1PointSpreadingandMarkovTransition

2.5.2LinearFilteringandDiffusion

2.5.3NonlinearFilteringandDiffusion

2.6WaveletsandMultiresolutionAnalysis

2.6.1QuestforNewImageAnalysisTools

2.6.2EarlyEdgeTheoryandMarr’sWavelets

2.6.3WindowedFrequencyAnalysisandGaborWavelets

2.6.4Frequency-WindowCoupling:Malvar-WilsonWavelets

2.6.5TheFrameworkofMultiresolutionAnalysis(MRA)

2.6.6FastImageAnalysisandSynthesisviaFilterBanks

3ImageModelingandRepresentation

3.1ModelingandRepresentation:What,Why,andHow

3.2DeterministicImageModels

3.2.1ImagesasDistributions(GeneralizedFunctions)

3.2.2LpImages

3.2.3SobolevImagesHn(Ω)

3.2.4BVImages

3.3WaveletsandMultiscaleRepresentation

3.3.1Constructionof2-DWavelets

3.3.2WaveletResponsestoTypicalImageFeatures

3.3.3BesovImagesandSparseWaveletRepresentation

3.4LatticeandRandomFieldRepresentation

3.4.1NaturalImagesofMotherNature

3.4.2ImagesasEnsemblesandDistributions

3.4.3ImagesasGibbs’Ensembles

3.4.4ImagesasMarkovRandomFields

3.4.5VisualFiltersandFilterBanks

3.4.6Entropy-BasedLearningofImagePatterns

3.5Level-SetRepresentation

3.5.1ClassicalLevelSets

3.5.2CumulativeLevelSets

3.5.3Level-SetSynthesis

3.5.4AnExample:LevelSetsofPiecewiseConstantImages

3.5.5HighOrderRegularityofLevelSets

3.5.6StatisticsofLevelSetsofNaturalImages

3.6TheMumford-shahFreeBoundaryImageModel

3.6.1PiecewiseConstant1-DImages:AnalysisandSynthesis

3.6.2PiecewiseSmooth1-DImages:FirstOrderRepresentation

3.6.3PiecewiseSmoothI-DImages:PoissonRepresentation

3.6.4PiecewiseSmooth2-DImages

3.6.5TheMumford-ShahModel

3.6.6TheRoleofSpecialBVImages

4ImageDenoising

4.1Noise:Origins.Physics.andModels

4.l.1OriginsandPhysicsofNoise

4.1.2ABriefOverviewof1-DStochasticSignals

4.1.3StochasticModelsofNoises

4.1.4AnalogWhiteNoisesasRandomGeneralizedFunctions

4.1.5RandomSignalsfromStochasticDifferentialEquations

4.l.62-DStochasticSpatialSignals:RandomFields

4.2LinearDenoising:LowpassFiltering

4.2.1Signalvs.Noise

4.2.2DenoisingviaLinearFiltersandDiffusion

4.3Data-DrivenOptimalFiltering:WienerFilters

4.4WaveletShrinkageDenoising

4.4.1Shrinkage:Quasi-statisticalEstimationofSingletons

4.4.2Shrinkage:VariationalEstimationofSingletons

4.4.3DenoisingviaShrinkingNoisyWaveletComponents

4.4.4VariationalDenoisingofNoisyBesovImages

4.5VariationalDenoisingBasedonBVImageModel

4.5.1TV.RobustStatistics.andMedian

4.5.2TheRoleofTVandBVImageModel

4.5.3BiasedIteratedMedianFiltering

4.5.4Rudin.Osher.andFatemi'sTVDenoisingModel

4.5.5ComputationalApproachestoTVDenoising

4.5.6DualityfortheTVDenoisingModel

4.5.7SolutionStructuresoftheTVDenoisingModel

4.6DenoisingviaNonlinearDiffusionandScale-SpaceTheory

4.6.1PeronaandMalik'sNonlinearDiffusionModel

4.6.2AxiomaticScale-SpaceTheory

4.7DenoisingSalt-and-PepperNoise

4.8MultichannelTVDenoising

4.8.1VariationalTVDenoisingofMultichannelImages

4.8.2ThreeVersionsofTV[u]

5ImageDeblurring

5.1Blur:PhysicalOriginsandMathematicalModels

5.1.1PhysicalOrigins

5.1.2MathematicalModelsofBlurs

5.1.3Linearvs.NonlinearBlurs

5.2Ill-posednessandRegularization

5.3DeblurringwithWienerFilters

5.3.1IntuitiononFilter-BasedDeblurring

5.3.2WienerFiltering

5.4DeblurringofBVImageswithKnownPSF

5.4.1TheVariationalModel

5.4.2ExistenceandUniqueness

5.4.3Computation

5.5VariationalBlindDeblurringwithUnknownPSF

5.5.1ParametricBlindDeblurring

5.5.2Parametric-Field-BasedBlindDeblurring

5.5.3NonparametricBlindDeblurring

6ImageInpainting

6.1ABriefReviewonClassicalInterpolationSchemes

6.1.1PolynomialInterpolation

6.1.2TrigonometricPolynomialInterpolation

6.1.3SplineInterpolation

6.1.4Shannon'sSamplingTheorem

6.1.5RadialBasisFunctionsandThin-PlateSplines

6.2ChallengesandGuidelinesfor2-DImageInpainting

6.2.1MainChallengesforImageInpainting

6.2.2GeneralGuidelinesforImageInpainting

  6.3InpaintingofSobolevImages:Green'sFormulae

6.4GeometricModelingofCurvesandImages

6.4.1GeometricCurveModels

6.4.22-.3-PointAccumulativeEnergies.Length.andCurvature.

6.4.3ImageModelsviaFunctionalizingCurveModels

6.4.4ImageModelswithEmbeddedEdgeModels

 6.5InpaintingBVImages(viatheTVRadonMeasure)

6.5.1FormulationoftheTVInpaintingModel

6.5.2JustificationofTVInpaintingbyVisualPerception

 6.5.3ComputationofTVlnpainting

6.5.4DigitalZoomingBasedonTVInpainting

6.5.5Edge-BasedImageCodingviaInpainting

6.5.6MoreExamplesandApplicationsofTVInpainting

6.6ErrorAnalysisforImageInpainting

6.7InpaintingPiecewiseSmoothImagesviaMumfordandShah

6.8ImageInpaintingviaEuler'sElasticasandCurvatures

6.8.1InpaintingBasedontheElasticaImageModel

6.8.2InpaintingviaMumford-Shah-EulerImageModel

6.9InpaintingofMeyer'sTexture

6.10ImageInpaintingwithMissingWaveletCoefficients

6.11PDEInpainting:Transport.Diffusion.andNavier-Stokes

6.11.1SecondOrderInterpolationModels

6.11.2AThirdOrderPDEInpaintingModelandNavier-Stokes

……

7ImageSegmentation

Bibliography

Index

……

图像处理指修改图像的外观,以达到美化或者其他的特殊效果。 图像分析指图像的元素形成,色彩范围,像素等内在的因素。 图像理解指研究图像所表达的深层涵义。 图像分析的结果可以用于图像处理,图像处理的结果可以左右图像理解,图像理解的深浅对图像处理和图像分析没有影响。*www.shufadashi.com*ɼ*�

声明:本网内容旨在传播知识仅供参考,不代表本网赞同其观点,文字及图片版权归原网站所有。

分析美国科学出版社PDEgeometriccomputationimplementationinterestedadvancesshah
你可能还关注
热门推荐
今日推荐 更多