首页 > 知识库 > 正文

怎样理解高数中的发散与收敛?

在数学分析中,2113与收敛(convergence)相对的概念就5261是发散(divergence),发散函数的定义4102是:令f(x)为定义在1653R上的函数,如果存在实数b>0,对于任意给出的c>0,任意x1,x2满足|x1-x2|0,对任意x1,x2满足0。发散在数学分析中,与收敛(convergence)相对的概念就是发散(divergence)。发散级数(英语:Divergent Series)指(按柯西意义下)不收敛的级数。如级数  和  ,也就是说该级数的部分和序列没有一个有穷极限。如果一个级数是收敛的,这个级数的项一定会趋于零。因此,任何一个项不趋于零的级数都是发散的。不过,收敛是比这更强的要求:不是每个项趋于零的级数都收敛。其中一个反例是调和级数调和级数的发散性被中世纪数学家奥里斯姆所证明。收敛的本解释:收起,绝对收敛。一般的级数u1+u2+...+un+...它的各项为任意级数如果级数Σu各项的绝对值所构成的正项级数Σ∣un∣收敛则称级数Σun绝对收敛经济学中的收敛,分为绝对收敛和条件收敛条件收敛:指的是技术给定,其他条件一样的话,人均产出低的国家,相对于人均产出高的国家,有着较高的人均产出增长率,一个国家的经济在远离均衡状态时,比接近均衡状态时,增长速度快。一般的级数u1+u2+...+un+..,它的各项为任意级数,如果级数Σu各项的绝对值所构成的正项级数Σ∣un∣收敛,则称级数Σun绝对收敛。如果级数Σun收敛,而Σ∣un∣发散,则称级数Σun条件收敛。数列极限的定义,对于数列{ xn},如果当n无限增大时, xn无限趋近于某个确定的常数a,称a为数列的极限,这时,也称数列{ xn}收敛于a.否则,称数列{ xn}发散www.shufadashi.com防采集。

在数学分析中,与收敛(convergence)相对的概念就是发散(divergence).发散函数的定义是:令f(x)为定义在R上的函数,如果存在实数b>0,对于任意给出的c>0,任意x1,x2满足|x1-x2|0,对任意x1,x2满足0。简单的说有极限(极限不为无穷)就是收敛,没有极限(极限为无穷)就是发散。例如:f(x)=1/x 当x趋于无穷是极限为0,所以收敛。f(x)= x 当x趋于无穷是极限为无穷,即没有极限,所以发散。

x肯定是趋近于无穷大的啊,我还没见过哪个级数中的n会趋近于0的。 我为你证明一下: 1/lnx>1/x,(事实上,e^x>(1+1)^x>x,故x>lnx), 而级数∑1/x是一个调和级数,它是发散的。 根据比较审敛法知:级数∑1/lnx发散! 友情提示:

收敛就是函数图像能够连续的趋近于一个数追答发散就是和收敛相反,在一点的左右极限存在且相等就收敛,否则发散,百度查下发散与收敛追答在数学分析中,与收敛(convergence)相对的概念就是发散(divergence)。发散函数的定义是:令f(x)为定义在R上的函数,如果存在实数b>0,对于任意给出的c>0,任意x1,x2满足|x1-x2|0,存在c>0,对任意x1,x2满足0<|x1-x0|<c,0<|x2-x0|<c,有|f(x1)-f(x2)|<b,发散是不连续 收敛是连续,先采纳~内容来自www.shufadashi.com请勿采集。

声明:本网内容旨在传播知识仅供参考,不代表本网赞同其观点,文字及图片版权归原网站所有。

你可能还关注
热门推荐
今日推荐 更多